Discovery and Characterization of BHV-7000: A Novel Kv7.2/7.3 Activator for the Treatment of Epilepsy

Steven Dworetzky, PhD¹; Kelly Picchione, PhD¹; Lynn Resnick, PhD¹, Michael Bozik, MD¹

1 Biohaven Pharmaceuticals, New Haven, CT, USA

CONCLUSIONS

- BHV-7000 is a novel and differentiated activator of Kv7.2/7.3 channels
- BHV-7000 is chemically and pharmacologically distinct from ezogabine
- BHV-7000 "dials-out" GABA receptor activation
- BHV-7000 is potent in the MES epilepsy model without impact on neurobehavior
- BHV-7000 was well-tolerated in Phase 1 SAD/MAD studies without CNS adverse effects typical of anti-seizure medications

Disclosures: SD, KP, LR, and MB are employed by and hold stock/stock options in Biohaven Pharmaceuticals. References: 1. Cooper EC. Semin Cell Dev Biol. 2011; 22:185-192; 2. Vigil FA. Front Physiol. 2020;11:688.

o download a copy of this poster, scan QR code.

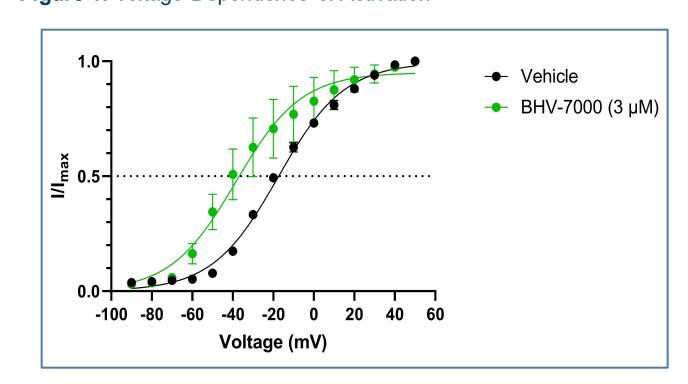
INTRODUCTION

- ▶ The Kv7 (KCNQ) subfamily of voltage-gated potassium channels consists of 5 members (Kv7.1-5) that have various roles involving currents in the heart, nerve, brain, and epithelia¹
- ▶ Kv7.2/7.3 channels are low-threshold voltage-gated potassium channels expressed in the central nervous system (CNS) that modulate neuronal excitability²
- Mutations in Kv7.2/7.3 channels can lead to seizures or other epileptic syndromes
- ▶ Preclinical studies have shown that activating Kv7.2/7.3 hyperpolarizes resting membrane potential (RMP), increases action potential (AP) threshold, and has potent anti-seizure effects
- ▶ Precision targeting of Kv7 potassium channels may deliver robust efficacy while minimizing the risk of adverse effects associated with traditional anti-epileptic drugs
- Although the Kv7.2/7.3 channel is a validated target for treating seizures, modulators with improved potency, selectivity, and tolerability are needed
- ▶ BHV-7000 is a novel and differentiated activator of heteromeric Kv7.2/7.3 potassium channels in development for the treatment of epilepsy

OBJECTIVE

▶ The objective of this study was to describe the discovery and characterization of BHV-7000

METHODS OVERVIEW

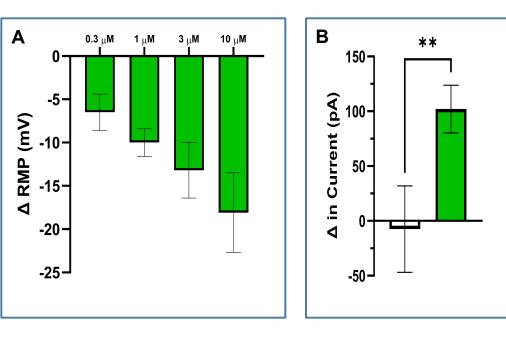

- A screening tier was designed to discover potent and selective Kv7.2/7.3 activators
- Fluorescent and electrophysiological assays were employed to characterize lead compounds
- ▶ Antiseizure efficacy was evaluated in rats in the maximal electroshock seizure (MES) model and tolerability was assessed by neurological score (NS)
- Standard ADME and toxicology assays were used
- ▶ A first-in-human phase 1 single ascending dose/multiple ascending dose (SAD/MAD) study assessed safety, tolerability, and pharmacokinetics in healthy volunteers

METHODS AND RESULTS

Effects of BHV-7000 on V_{1/2}

- ▶ hKv7.2/7.3 channels stably expressed in U2-OS cells were used and examined on the QPatch48 Automated Patch Clamp system
- Three concentrations (0.3 μM, 1 μM, and 3 μM) of BHV-7000 were each applied to a minimum of 4 separate cells
- Peak inward tail current amplitude recorded at -120 mV was measured for each sweep
- Data were normalized relative to the largest inward tail current measured for each cell (I/Imax)
- Mean (SD) data were fitted with a Boltzmann equation to produce the halfmaximal activation voltage $(V_{1/2})$
- ▶ The bottom of the curves were fixed to zero
- At 3 μM, BHV-7000 shifted the half-maximal activation potential by -20.97 mV (Figure 1 and Table 1)

Figure 1. Voltage Dependence of Activation

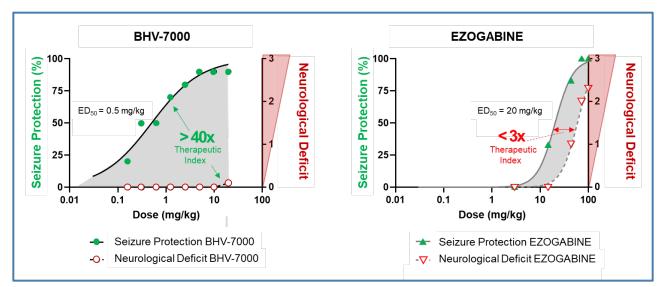

Table 1. Voltage Dependence of Activation

	0.3 μΜ	1.0 μΜ	3.0 µM
V _{1/2} shift	-7.60	-15.21	-20.97

Effects of BHV-7000 on RMP and AP Threshold

- ▶ Whole-cell current clamp recordings were performed on culture days 7-9 from rat cortical neurons (Transnetyx)
- ▶ BHV-7000 produced a concentration-dependent hyperpolarization of the RMP (Figure 2A)
- Manual patch clamp recordings from rat cortical neurons (Lonza) were used to determine effects of BHV-7000 on action potential threshold
- ► The change in AP threshold at 3 µM was significantly higher for BHV-7000 (n=5) than control (n=4) (p=0.0058, unpaired t-test with Welch's correction) (Figure 2B)

Figure 2. Hyperpolarization of RMP and Change in the AP Threshold


GABA_A α1β3γ2 Receptor Activation

- ► The EC₁₀ concentration of GABA (0.85 µM) was added to establish a baseline response
- ► Then 10 µM ezogabine (n=2) or BHV-7000 (n=2) was applied in the presence of GABA for 2 seconds
- BHV-7000 and ezogabine produced respective potentiation of 12% and 46% (**Figure 3**)
- The GABA_A potentiation of BHV-

BHV-7000 In Vivo Efficacy and Neurobehavior Effects

- ▶ Efficacy and neurological deficit were assessed in the rat MES model
- ▶ Data for BHV-7000 (n=10/group) and ezogabine (n=6/group) were collected in independent experiments conducted by InterVivo Solutions
- ▶ MES testing was performed at the approximate C_{max} for BHV-7000 (1 h after oral dosing) and for ezogabine (30 min after oral dosing)
- ▶ Neurological deficit testing was conducted 5 minutes prior to the MES test and was used to calculate the therapeutic index

Figure 4. Efficacy and Neurological Deficit in Rat MES

BHV-7000 Phase 1 Safety and Tolerability

- ▶ In a Phase I SAD/MAD clinical trial of BHV-7000, single doses (up to 100 mg) and multiple doses (up to 40 mg) daily for 15 days were well-tolerated
- ► CNS-related adverse events typical of anti-seizure medications were not reported (Table 2)
- ▶ Most adverse events were mild and resolved spontaneously; no serious or severe adverse events or dose-limiting toxicities were reported

Table 2. CNS Adverse Events^a in the MAD Pooled Population

	BHV-7000 MAD pooled (n=17)
omnolence	0%
leadache	18%
Balance disorder	0%
izziness	0%
lemory impairment	0%
Sensory disturbance	0%
peech disorder	0%

MedDRA Preferred Term within the System Organ Class of nervous system disorders. MAD=multiple ascending dose

7000 was significantly lower than ezogabine (p=0.0469, unpaired ttest with Welch's correction)

ກ 40-E 30-**%** 20-길 10-

Figure 3. Change From Baseline

in GABA_A Response

□ Control

BHV-7000 (3 μM)

***P*<0.01

*P<0.05